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We consider two numerical transparent boundary conditions that have been pre-
viously introduced in the literature. The first condition (BPP) was proposed by
Baskakov and Popov (1991,Wave Motion14, 121–128) and Papadakiset al. (1992,
J. Acoust. Soc. Am.92, 2030–2038) while the second (SDY) is that of Schmidt and
Deuflhard (1995,Comput. Math. Appl.29, 53–76) and Schmidt and Yevick (1997,
J. Comput. Phys.134, 96–107). The latter procedure is explicitly tailored to the form
of the underlying numerical propagation scheme and is therefore unconditionally
stable and highly precise. Here we present a new derivation of the SDY approach. As
a result of this analysis, we obtain a simple modification of the BPP method that guar-
antees accuracy and stability for long propagation step lengths.c© 2001 Academic Press

INTRODUCTION

Below we examine two transparent boundary conditions. The first, termed the SDY
condition in the abstract, is exact and unconditionally stable. However, for the simplified
version discussed in this paper, this is only true in the limit of zero transverse grid point
spacing. In contrast, the second BPP condition is divergent for certain ranges of transverse
and longitudinal step sizes. Here we derive a slightly modified version of the SDY formalism
that generates new values for the central coefficients of the BPP method given by Eq. (26)
and Eq. (27) below. Our values map the BPP method onto the SDY procedure and can be
immediately employed to ensure the accuracy and stability of any BPP implementation for
large longitudinal steps.

Although the SDY and BPP boundary conditions have been developed for numerous
parabolic differential equations, for simplicity we specialize in the optical analog of the
quantum-mechanical Schr¨odinger equation, namely the paraxial Fresnel equation,
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for a waveguide located in the region 0< z< Z with a longitudinal axis along thez-
direction and a given specified initial conditionv(0). For a forward-propagating electric
field E and ane−iωt time-dependence,v = e−ik0n0zE is the slowly varying component of the
electric field. Herek0 = 2π/λ0, whereλ0 andn0 are the vacuum wavelength and a suitably
defined reference refractive index, respectively.

The goal of numerical boundary conditions is to supply a procedure such that the function
v calculated in the internal domain of the computational window{x|x− < x < x+} over
the extent of the waveguide is the same as if computed on the infinite physical domain. For
simplicity, since the derivation of these conditions is the same forx− andx+, we examine
only a right boundary pointx+ = 0 below and further setn = n0 in the exterior domain
{x|x ≤ x− ∪ x ≥ x+}, wherev therefore satisfies

∂zv = i

2k0n0
∂2

xv. (2)

Nonlocal (transparent) boundary conditions transform the outgoing property of waves
in the external domain into a relation between the boundary value of the field at a given
longitudinal position and the boundary values at all preceding propagation steps. Two
methods for generating such conditions have been proposed previously. The first, introduced
by Baskakov, Popov, and Papadakis (BPP), is derived by Fourier transforming the paraxial
or wide-angle equation with respect to the longitudinal propagation variable [1–7]. The
outgoing wave condition then maps at each boundary point to a simple algebraic relation
between the longitudinal derivative of each Fourier component of the field and the field
value. Inverse Fourier transforming this relation yields the boundary field valuesv(x±, z)
at a given longitudinal distance as an integral over all previousz-values of∂x v(x±, z)
along the boundary. However, the integral must subsequently be approximated by a discrete
sum over the computed field values. While no general error analysis exists for this step, the
method has been found to be conditionally stable with no minimum step size that guarantees
stability in the particular case of a Crank–Nicholson longitudinal and a uniform transverse
discretization with a forward (implicit) rectangular rule applied to the integral expression
[7, 8]. Recently, the BPP formalism has been recast into a new, highly modified form
that is exact and unconditionally stable. However, both the derivation and the numerical
implementation of the resulting formulas are extremely involved and accordingly will not
be considered further here [9–11].

A second, easily programmed nonlocal boundary condition was proposed in 1995 by
Schmidt and Deuflhard and extended in 1999 by Schmidt and Yevick (SDY) [12–15].
Unlike the standard BPP method, which is stable only if certain numerical procedures
for approximating the integral over prior field values are employed [10, 11], the SDY
condition has been proved to be unconditionally stable [12]. Further, the SDY proce-
dure fully incorporates the discrete nature of the propagation method. Note however that
the procedures that we generate below are only arbitrarily accurate and unconditionally
stable in the limit of zero transverse grid point spacing, as to derive corresponding formulas
that are exact for arbitrary grid point spacing requires the straightforward but more lengthy
treatment of [15].

To obtain a heuristic derivation but useful derivation of the SDY procedure within the
framework of the Crank–Nicholson method (rigorous proofs of our assertions for an entire
family of analogous second-order accurate implicit propagation procedures are presented
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in [15]), we first introduce the displacement or shift operator

s= e1z ∂
∂z , (3)

with the property thatsEm+1 = Em, where1z is the longitudinal step size,Em denotes
E(xb, zm), and zm is the longitudinal position at the end ofm propagation steps [13].
Specializing to the Crank–Nicholson method

2ik0n0
Em+1− Em

1z
= ∂2

∂x2

(
Em+1+ Em

2

)
(4)

we find immediately that
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in whichλ = 4ik0n0/1z. Defining the square root such that
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√
λ2 with Reλ ≥ 0, all Fourier components of the propagating

field are bounded asx→+∞ if we choose the solution

∂Em+1
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1+ s
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as is justified mathematically in [15]. The square-root expression
√

1−s
1+s is then expanded as a

Taylor series ins after which the relationshipsj Em+1 = Em+1− j yields the required bound-
ary condition for∂Em+1

∂x in terms of the present and past boundary valuesEm+1, Em, Em−1 · · ·
E1.

We next establish the relationship between the BPP and SDY approaches. This requires
that the SDY procedure be reformulated along the lines of the following derivation of the
BPP nonlocal boundary condition [1].

BASAKOV–POPOV–PAPADAKIS (BPP) FORMULATION

To generate the BPP condition, the paraxial equation is initially Fourier transformed with
respect to the longitudinalz-coordinate. The Fourier coefficients

c(x, k) =
∫ ∞
−∞

v(x, z) e−ikz dz (7)

satisfy

∂2
x c(x, k) = 2k0n0k c(x, k) (8)

so that

c(x, k) = A(k)e
√

2k0n0kx + B(k)e−
√

2k0n0kx. (9)
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The appropriate boundary condition isA(k) = 0 [16] which yields√
2k0n0k c(x+, k)+ ∂x c(x+, k) = 0. (10)

After inverse Fourier transforming we obtain

v(x+, z) = 1

2π

∫ ∞
−∞

c(0, k) eikz dk = − 1

2π

√
i

2k0n0

∫ ∞
−∞

1√
ik
∂x c(x+, k) eikz dk. (11)

Substituting

1√
ik
= 1√

π

∫ ∞
0
ζ−

1
2 e−ikζ dζ

leads to the desired Neumann-to-Dirichlet boundary condition,

v(x+, z) = −(1+ i )
1√

4πk0n0

∫ ∞
0
ζ−

1
2 ∂x v(x+, z− ζ ) dζ (12)

While Eq. (12) expresses the electric field at a given boundary point in terms of the
history of its transverse derivatives at the boundary, the expression is in the form of a
continuous integral while numerical propagation procedures determine the electric field
only at a discrete set of grid points. Accordingly, the integral must be approximated by an
expression of the form

v(x+, z) = −(1+ i )
1√

4πk0n0

∞∑
j=0

α j ∂x v(x+, z− j1z). (13)

In this paper, three standard choices for the parameter setα j will be analyzed [17]. The
first of these corresponds to associating the value ofv at z0+ j1z with the integral∫ z0+( j+1)1z

z0+ j1z

1√
k

dk (14)

in the forward direction to yield (rectangular rule 1)

α j = 2
√
1z
(
( j + 1)

1
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1
2

)
, α0 = 2

√
1z, (15)

or alternatively

α j = 2
√
1z

( j + 1)
1
2 + j

1
2

, α0 = 2
√
1z. (16)

If we instead employ an integral in the reverse direction, we obtain (rectangular rule 2)

α j = 2
√
1z
(

j
1
2 − ( j − 1)

1
2

)
= 2

√
1z

j
1
2 + ( j − 1)

1
2

, α0 = 0, (17)

which we will later demonstrate is best suited to an implicit numerical propagation method.
The BPP coefficients that will similarly be found to be best adapted to the Crank–Nicholson
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procedure are derived by applying a trapezoidal integration rule to the interval between
z+ ( j − 1)1z andz+ ( j + 1)1z. This yields (trapezoidal rule)

α j = 4

3

√
1z
(
( j + 1)
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2 − 2 j

3
2 + ( j − 1)

3
2

)
, α0 = 4

3

√
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or
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3
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2

]
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3

√
1z. (19)

Unlike the SDY method below, the stability of the above procedure is only guaranteed for
certain ranges of parameter values which necessarily depend on the integration method [7,
10, 11].

SCHMIDT–DEUFLHARD–YEVICK (SDY) FORMULATION

We now proceed to establish the connection between the BPP and SDY formalisms by
deriving a slightly modified version of the SDY procedure. Our analysis proceeds as in
the derivation of the BPP method above with the difference that the discrete nature of the
propagation algorithm is incorporated from the beginning. In this manner we obtain a new
set of theα j coefficients that correct the accuracy and stability problems inherent in the
standard BPP procedure.

To commence, we express the electric field as a Fourier series over the set of discrete
longitudinal pointsz0+ j1z rather than as a Fourier integral overz, i.e., we write

ck(x) = 1

T

∫ T
2

− T
2

v(x, z) e−2π ikz/T dz. (20)

The size of the intervalT over which the Fourier series is taken is arbitrary; however, we
will apply our final results in theT →∞ limit (identical results can be derived for the
z> 0 half-space). Next, we must write an equation that specializes to the Crank–Nicholson
formulation. To do this, we insert Eq. (20) into Eq. (4). This yields for the Fourier coefficients
vk(x),

∂2
x ck(x) = 4k0n0

i1z

e2π ik1z/T − 1

e2π ik1z/T + 1
ck(x) = 4k0n0

1z
tan

(
πk1z

T

)
ck(x). (21)

The general solution forck(x) is

ck(x) = Ak e
√

4k0n0
1z tan( πk1z

T ) x + Bk e−
√

4k0n0
1z tan( πk1z

T ) x. (22)

Thus, in analogy with Eq. (10), to ensure that the field properly decays in the right external
region (the case of nonzero reflection at the boundary is described in Appendix A) we must
imposeAk = 0 so that√

4k0n0

1z
tan

(
πk1z

T

)
ck(x+)+ ∂x ck(x+) = 0. (23)
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We convert the above property of the Fourier coefficients to a boundary condition on the
electric field by inverse discrete Fourier transforming as

v(x+, z) =
∞∑

k=−∞
ck(x+) e2π ikz/T = −

√
i1z

4k0n0

∞∑
k=−∞

1√
i tan

(
πk1z

T

) ∂x ck(x+) e2π ikz/T ,

(24)

where the square root is defined as in Eq. (6). To evaluate this expression, we expand in
powers ofe−2π ik1z/T according to

1√
i tan

(
πk1z

T

) = ∞∑
j=0

β j e−2π i jk1z/T . (25)

After subsequently summing over the indexk, we obtain the semi-discrete boundary con-
dition (note that the transverse deriviative is still assumed continuous)

v(x+, z) = −(1+ i )

√
1z

8k0n0

∞∑
j=0

β j ∂x v(x+, z− j1z) (26)

where

β j =
(

1, 1,
1

2
,

1

2
,

1 · 3
2 · 4,

1 · 3
2 · 4,

1 · 3 · 5
2 · 4 · 6,

1 · 3 · 5
2 · 4 · 6, . . .

)
. (27)

This is our main result. Specifically, Eq. (27) is the exact analog of the main BPP formula,
Eq. (12), yielding BPP coefficients that are precisely matched to the Crank–Nicholson
method (coefficients for related implicit and explicit numerical propagation procedures can
be derived in an analogous fashion). Hence any BPP propagation code will acquire the
accuracy of the SDY approach if the standard BPP coefficients Eqs. (15)–(19) are simply
replaced by those of Eq. (27). The resulting program is then unconditionally stable in the
limit of small transverse grid point spacing as proven in [12].

A few additional aspects of Eq. (27) should be mentioned. First, although the above
expression has been derived on the half-spacez≥ 0, it is still exact if the electric field
and its first derivative are zero at the computational window boundaries forz= 0. Sec-
ondly, as we have mentioned earlier, the above analysis strictly applies only in the limit
of zero transverse grid point spacing. To generate a precise version of the SDY procedure
for finite 1x requires the introduction of an additional shift operator that relates two ad-
jacent transverse electric field values as in [15]. Finally, note that theβ j are the absolute
values of the coefficients that result from the Taylor series expansion of Eq. (6) and are
in fact those obtained by solving forv in terms of∂zv in Eq. (6) prior to expanding in
powers ofs. In a similar fashion, Eq. (12) can be reformulated to express∂zv in terms
of v; however, the resulting integral formulas are, in this case, far more cumbersome (cf.
Appendix B).
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NUMERICAL VERIFICATION

In the preceding discussion, we developed a slightly modified version of the SDY method.
This method is functionally identical to the standard BPP formalism but with a new, exact
set of coefficients that guarantees stability for large longitudinal step lengths. To illustrate
the practical importance of these results, we first compare the exact and approximate BPP
coefficients. We then demonstrate the accuracy of the new SDY technique through a standard
numerical error analysis and finally demonstrate in a benchmark computational acoustics
calculation that this method, unlike the original BPP procedure, is convergent for large
longitudinal step lengths.

A direct comparison of the BPP and modified SDY coefficients is presented in Fig. 1,
which displays the normalized coefficients, resulting from Eq. (15) (dashed), Eq. (17)
(dashed-dotted), and Eq. (18) (dotted) together with the corresponding coefficients for
the modified SDY formulation for the Crank–Nicholson (solid line) and implicit (thick
solid line) propagation methods, given by the Taylor series coefficients of

√
π

2

(
1+s
1−s

)1/2
and√

π

2 (1− s)−1/2 (cf. Eq. 26). Clearly, the BPP trapezoidal rule coefficients are closest to
the exact Crank–Nicholson coefficients while applying the rectangular rule 2 (backward
integration formula) for the BPP integral instead leads to an acceptable approximation to the
exact implicit method coefficients. In each case, however, the BPP values diverge noticeably
from the SDY results especially at smallj .

FIG. 1. The coefficients for the BPP backward rectangular integration formula, (dashed), the BPP forward
integration formula (dashed-dotted), the BPP trapezoidal integration formula (dotted), the modified SDY Crank–
Nicholson method (solid line), and the modified SDY implicit method (thick solid line).
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Next, we present a numerical error analysis of the modified SDY procedure, Eq. (26), by
considering the reflection of a Gaussian beam described by

E(x, 0) = e−x2/100e−k0n0 sin(π/9)x (28)

from the computational window boundary as a function of the number of transverse grid
points. In the calculation, the computational window width is 150µm, n = n0 = 1, the
longitudinal step size1z= 0.4µm, and the vacuum light wavelengthλ = 1.55µm. When
we examine Fig. 2, which displays the power remaining in the computational window as a
function of propagation distance and number of transverse grid points,N, we observe that
the reflection induced by the transparent boundary condition decreases as the square of the
grid point spacing. This behavior, which is entirely analogous to that of Fig. 5 in Ref. [13],
arises from the second-order nature of the finite-element method applied to implement
the continuous derivative appearing in the modified SDY boundary condition. In applying
transparent boundary condition to the Crank–Nicholson method, Eq. (4), we have written,
e.g., for the right-hand boundary

∂2v

∂x2
(x+, z) ≈ 2

(1z)2

(
v(x+ −1x, z)− v(x+, z)+1x

∂v

∂x
(x+, z)

)
(29)

FIG. 2. The power remaining in the computational window for a Gaussian beam impinging on the compu-
tational window boundary for the modified SDY method as a function of propagation distance and number of
transverse grid points.
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and

∂2v

∂x2
(x+ −1x, z) ≈ 1

4(1z)2

(
v(x+ − 31x, z)− v(x+ −1x, z)+ 21x

∂v

∂x
(x+, z)

)
.

(30)

The partial derivatives appearing on the right-hand side of the above equations are then
replaced by values computed by Eq. (26) or Eq. (13), and the derivative∂v

∂x (x+, z) is regarded
as a separate, fictitious degree of freedom. While such a formulation is non-Hermitian, the
imaginary part of the (three) spurious eigenvalues associated with the Crank–Nicholson
propagation matrix vanish in the limit of zero grid point spacing. An alternative procedure
is to replace∂v

∂x (x+, z) in Eq. (26) or Eq. (13) byv(x+ +1x, z)− v(x+, z) and then to
considerv(x+ +1x, z) as the additional degree of freedom.

Finally, we demonstrate that the modified SDY method is convergent for large longitudinal
step lengths in contrast to the standard BPP method. To relate our calculation to previous
literature, we revisit the standard benchmark underwater acoustic test case employed by
M. Mayfield in [7] to prove the lack of stability of the BPP method. However, we consider
the case of small transverse and long longitudinal step lengths. In this limit, divergences
arising from the approximate treatment of the transverse problem employed for both the
SDY and BPP methods in this paper are suppressed while the unconditional longitudinal
stability afforded by the modified SDY method becomes apparent. We again employ the
paraxial wave equation (Tappert PE) in our example.

Hence we consider an ocean 100 m in depth with a sound velocity of 1500 m/s and a
density of 100 g/cm3 above a lossless bottom layer with a sound velocity of 1550 m/s and
density of 1.2 g/cm3. A 500 Hz point source is located at an ocean depth of 50 m; the change
in acoustic pressure is then recorded at the same 50 m depth at ranges of up to 100 m. In
contrast to [7], in which a transverse (depth) step of 5 m and a 20 point transverse grid was
selected, we employ a 1 m transverse grid point spacing and 200 transverse grid points to
ensure that any instabilities arise from errors in the numerical description of the problem in
the longitudinal direction and not from the lack of high-order accuracy in the evaluation of
transverse deriviatives, which is shared by both approaches in our present treatment. The
propagation loss curves, as a function of longitudinal distance (range) for a large 100 m
longitudinal step length for both the modified SDY (solid line), and standard BPP formalism
(dashed line), are presented in Fig. 3. While the two sets of results nearly agree at small
ranges, the error and numerical instability of the original BPP formalism are apparent for
ranges beyond 2 km, clearly proving the assertions of this paper.

CONCLUSIONS

While the BPP formalism previously has been the preferred method for implementing
transparent boundary conditions in two-dimensional paraxial propagation problems, we
have demonstrated in this paper that the unconditionally stable SDY procedure has the
same theoretical justification as the BPP method yet is intrinsically more accurate and
simpler to implement. Our theoretical development has also established the intrinsic error
of the BPP formulation and has provided a correspondence between different methods
of approximating the continuous BPP result and discrete numerical propagation schemes.
In the context of two companion papers which extend the SDY formalism to wide-angle
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FIG. 3. The propagation loss versus range for the acoustic test case of [7] as computed with the modified
SDY (solid line) and the standard BPP (dashed line) formalisms.

propagation algorithms [18–20], the results of this article clearly establish the practical and
theoretical importance of future generalizations of the SDY procedure.

APPENDIX A: CONTINUOUS VERSION OF SDY METHOD

The BPP formalism can be easily modified to yield a Dirichlet-to-Neumann boundary
condition that is the analog of the standard SDY formula, Eq. (6). The boundary condition
that results in place of Eq. (12), namely,

∂xv(x+, z) = (1− i )

√
n0k0

π

(
1

2

∫ z

0
(z′)−3/2

v(x+, z− z′) dz′ − lim
z′ →0

√
z′v(x+, z− z′)

)
(31)

can be obtained either directly from the half-space Fourier transform of the square root
appearing in Eq. (10) or by inverting Eq. (12) with respect to the Neumann data using the
Abel inversion formula. In the latter case, one obtains the intermediate expression

∂xv(x+, z) = −
√

2n0k0

π i

d

dz

∫ z

0
(z′)−1/2

v(x+, z− z′) dz′, (32)

which reduces to Eq. (31) after evaluating the derivative and subsequently integrating
by parts. Presumably because of the numerical complications associated with evaluating
Eq. (31), to our knowledge this result has not appeared previously in the literature.
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APPENDIX B: INCORPORATION OF BOUNDARY REFLECTION

If the refractive index in the region external to the boundary is inhomogeneous, each
Fourier componentck will be partially reflected with an effective reflection coefficientRk

at the computational window boundary. Eq. (23) then becomes

1− Rk

1+ Rk

√
4k0n0

1z
tan

(
πk1z

T

)
ck(x+)+ ∂x ck(x+) = 0. (33)

Expanding(1− Rk)/(1+ Rk), viewed as a function of the discrete argumentk, as the
Fourier series

1− Rk

1+ Rk
=
∞∑
j=0

ξ j e
−i 2π jk1z/T (34)

we obtain after inverse Fourier transforming

∂xv(x+, z) = −(1− i )

√
2k0n0

1z

∞∑
j=0

(
j∑

l=0

α j−l ξl

)
v(x+, z− j1z) (35)

in place of Eq. (13). Obviously, the major difficulty in applying Eq. (35) is the limited number
of reflection coefficients for which the inner sum has a simple analytic form [21, 22].
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